Electrostatic interactions affecting the active site of class sigma glutathione S-transferase.
نویسندگان
چکیده
We have shown previously that the solvent-induced equilibrium unfolding mechanism of class Sigma glutathione S-transferase (GST) is strongly affected by ionic strength [Stevens, Hornby, Armstrong and Dirr (1998) Biochemistry 37, 15534-15541]. The protein is dimeric and has a hydrophilic subunit interface. Here we show that ionic strength alone has significant effects on the conformation of the protein, in particular at the active site. With the use of NaCl at up to 2 M under equilibrium conditions, the protein lost 60% of its catalytic activity and the single tryptophan residue per subunit became partly exposed. The effect was independent of protein concentration, eliminating the dissociation of the dimer as a possibility for the conformational changes. This was confirmed by size-exclusion HPLC. There was no significant change in the secondary structure of the protein according to far-UV CD data. Manual-mixing and stopped-flow kinetics experiments showed a slow single-exponential salt-induced change in protein fluorescence. For equilibrium and kinetics experiments, the addition of an active-site ligand (S-hexylglutathione) completely protected the protein from the ionic-strength-induced conformational changes. This suggests that the change occurs at or near the active site. Possible structural reasons for these novel effects are proposed, such as the flexibility of the alpha-helix 2 region as well as the hydrophilic subunit interface, highlighting the importance of electrostatic interactions in maintaining the structure of the active site of this GST.
منابع مشابه
The Locally Denatured State of Glutathione S-Transferase A1-1: Transition State Analysis of Ligand-Dependent Formation of the C-Terminal Helix
On the basis of available x-ray structures, A-class glutathione S-transferases (GSTs) contain at their C-termini a short alpha-helix that provides a 'lid' over the active site in the presence of the reaction products, glutathione-conjugates. However, in the ligand-free enzyme this helix is disordered and crystallographically invisible. An aromatic cluster including Phe-10, Phe-220, and the cata...
متن کاملThe structural roles of a conserved small hydrophobic core in the active site and an ionic bridge in domain I of Delta class glutathione S-transferase.
GSTs (glutathione S-transferases; E.C.2.5.1.18) are a supergene family of dimeric multifunctional enzymes that have a major role in detoxification pathways. Using a GST from the mosquito Anopheles dirus (adGSTD4-4), we have characterized the enzymatic and physical properties of Leu-6, Thr-31, Leu-33, Ala-35, Glu-37, Lys-40 and Glu-42. These residues generate two motifs located in the N-terminal...
متن کاملIsolation and characterization of Phi class glutathione transferase partial gene from Iranian barley
Glutathione transferases are multifunctional proteins involved in several diverse intracellular events such as primary and secondary metabolisms, signaling and stress metabolism. These enzymes have been subdivided into eight classes in plants. The Phi class, being plant specific, is the most represented. In the present study, based on the sequences available at GenBank, different primers were d...
متن کاملSite-directed Mutagenesis of Arginine 13 Residue in Human Glutathione S-Transferase P1-1
In order to study the role of residue in the active site of glutathione S-transferase (GST), Arg13 residue in human GST P1-1 was replaced with alanine, lysine and leucine by site-directed mutagenesis to obtain mutants R13A, R13K and R13L. These three mutant enzymes were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. Mutat...
متن کاملFirst-sphere and second-sphere electrostatic effects in the active site of a class mu gluthathione transferase.
The activation of the thiol of glutathione (GSH) bound in the active site of the class mu glutathione transferase M1-1 from rat involves a hydrogen-bonding network that includes a direct (first-sphere) interaction between the hydroxyl group of Y6 and the sulfur of GSH and second-sphere interactions involving a hydrogen bond between the main-chain amide N-H of L12 and the hydroxyl group of Y6 an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 347 Pt 1 شماره
صفحات -
تاریخ انتشار 2000